On Marine Radar Near-Surface Current Mapping

Björn Lund¹, Brian Haus¹, Jochen Horstmann², Hans Graber¹, and CARTHE team

¹University of Miami, ²Helmholtz Zentrum Geesthacht

LASER Experiment

Sources: <u>carthe.org/blog</u>, <u>greenwaveinstruments.com</u>

Off-the-shelf GPS:

- 10 m accuracy
- 5 min frequency
- 3 months duration

Aerodynamic floater:

· Reduces windage

Flexible tether:

 Reduces wave rectification

Interlocking drogue panels:

- Compact
- Easy to assemble
- Anchor drifter in the current

Corn-based PHA

- Biodegradable in marine environment
- Industrial manufacturing

LASER drifter
U.S. Provisional Patent No. 62/369,593

LASER Experiment

Sources: <u>carthe.org/blog</u>, <u>greenwaveinstruments.com</u>

Off-the-shelf GPS:

- 10 m accuracy
- 5 min frequency
- 3 months duration

Aerodynamic floater:

Reduces windage

Flexible tether:

 Reduces wave rectification

Interlocking drogue panels:

- Compact
- Easy to assemble
- Anchor drifter in the current

Corn-based PHA

- Biodegradable in marine environment
- Industrial manufacturing

LASER drifter
U.S. Provisional Patent No. 62/369,593

Science Marine X-band Radar Specs

- 9.4 GHz (X-band)
- 2.3 m HH polarized antenna
- 12.5 m antenna height
- 2 s antenna period
- 2 kHz pulse frequency
- 10.5 m range resolution
- Coherent on receive
- Developed at HZG

Data Overview

- Green: good data
- Orange: data corrupted and/or incomplete
- Red: system down or failed collecting data
- Gray: at sea periods

Marine Radar "Calibration"

Maximize contrast of land targets by iteratively correcting:

- Azimuthal misalignment (-2.92°)
- Range offset (-15 m)
- Temporal offset (0 s)

Based on McCann & Bell, 2015

Marine Radar "Calibration"

Maximize contrast of land targets by iteratively correcting:

- Azimuthal misalignment (-2.92°)
- Range offset (-15 m)
- Temporal offset (0 s)

Following McCann & Bell, 2015

WS, 01/30/2016, 19:00:00.74-19:01:58.85 UTC

Operational Support

- 2-min-averaged, georeferenced, ramp-corrected, and normalized radar return
- Image shows current / salinity front, Masco 8, small boats
- Radar system not radiometrically calibrated

Current Front Evolution

Marine radar images:

- Allow tracking of frontal features
- Provide context for field work activities

Current Front Evolution

Marine radar images:

- Allow tracking of frontal features
- Provide context for field work activities

Near-surface Current Retrieval

Near-surface current mapping is based on surface wave signal:

- Convert sequence of radar images to Fourier space
- Obtain current from wave coordinates'
 Doppler shift, using least-squares fit

Near-surface Current Retrieval

Near-surface current mapping is based on surface wave signal:

- Convert sequence of radar images to Fourier space
- Obtain current from wave coordinates' Doppler shift, using least-squares fit

Near-surface Current Retrieval

Near-surface WS, 01/29/2016, 09:45-10:19 UTC Current 3 ₹ Retrieval Head Analysis box radius of 476.25 m 0 $(\sim 0.7 \text{ km}^2)$ 40% max overlap -2 between neighboring -3 Wind boxes ~30 min max -2 2 6 -6 -0 analysis period x [km]

Near-surface WS, 01/29/2016, 09:45-10:19 UTC Current 3 ₽ Retrieval Head Analysis box radius of 476.25 m 0 $(\sim 0.7 \text{ km}^2)$ 40% max overlap -2 between neighboring -3 boxes ~30 min max 6 -6 analysis period x [km]

Near-surface WS, 01/29/2016, 09:45-10:19 UTC Current 3 ₽ Retrieval Head Analysis box radius of 476.25 m 0 $(\sim 0.7 \text{ km}^2)$ 40% max overlap -2 between neighboring -3 boxes ~30 min max 6 -6 analysis period x [km]

Near-surface WS, 01/29/2016, 09:45-10:19 UTC Current 3 ₽ Retrieval Head Analysis box radius of 476.25 m $(\sim 0.7 \text{ km}^2)$ 40% max overlap between -2 neighboring -3 boxes ~30 min max 6 -6 analysis period x [km]

WS, 01/29/2016, 09:45-10:19 UTC

Radar–Drifter Comparison

Analysis periods (with gaps):

- (1) 01/20, 16:00 UTC-01/21, 19:00 UTC
- (2) 01/25, 17:00 UTC-01/26, 22:00 UTC
- (3) 01/28, 17:00 UTC-02/01, 13:00 UTC
- (4) 02/06, 06:00 UTC-02/07, 21:00 UTC
- (5) 02/10, 22:00 UTC-02/12, 19:00 UTC

Radar-Drifter Comparison

Radar-Drifter Comparison

Conclusions

- "Calibrated" marine radar images show frontal features (as well as slicks, wind rows, ...), guiding field work activities and providing context for data analysis
- Marine radar near-surface current maps compared against LASER drifter measurements
- For 4,130 radar–drifter data pairs (almost 6 days of data), standard deviations of differences are 4 cm s⁻¹ and 12° for current speed and direction
- Part of radar—drifter differences can be explained by different sampling depths / vertical current shear
- Frontal features / bands of enhanced radar backscatter coincide with strong convergence (downwelling)